

Tuesday 24 June 2014 – Morning

A2 GCE MATHEMATICS

4731/01 Mechanics 4

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4731/01
- List of Formulae (MF1)

Other materials required: Scientific or graphical calculator **Duration:** 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- **Write your answer to each question in the space provided in the Printed Answer Book**. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \text{ m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $q = 9.8$.

INFORMATION FOR CANDIDATES

- This information is the same on the Printed Answer Book and the Question Paper.
- The number of marks is given in brackets **[]** at the end of each question or part question on the Question Paper.
- **You are reminded of the need for clear presentation in your answers.**
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- **1** Alan is running in a straight line on a bearing of 090° at a constant speed of 4ms⁻¹. Ben sees Alan when they are 50m apart and Alan is on a bearing of 060° from Ben. Ben sets off immediately to intercept Alan by running at a constant speed of 6 m s^{-1} .
	- **(i)** Calculate the bearing on which Ben should run to intercept Alan. **[3]**
	- **(ii)** Calculate the magnitude of the velocity of Ben relative to Alan and find the time it takes, from the moment Ben sees Alan, for Ben to intercept Alan. **[4]**
- **2** A uniform solid circular cone has mass *M* and base radius *R*.
- (i) Show by integration that the moment of inertia of the cone about its axis of symmetry is $\frac{3}{10}MR^2$. (You may assume the standard formula $\frac{1}{2}mr^2$ for the moment of inertia of a uniform disc about its axis and that the volume of a cone is $\frac{1}{2}\pi r^2 h$.) $\frac{1}{3}\pi r^2 h$.) [6]

The axis of symmetry of the cone is fixed vertically and the cone is rotating about its axis at an angular speed of 6 rad s^{-1} . A frictional couple of constant moment 0.027 N m is applied to the cone bringing it to rest. Given that the mass of the cone is 2kg and its base radius is 0.3m, find

- **(ii)** the constant angular deceleration of the cone, **[3]**
- **(iii)** the time taken for the cone to come to rest from the instant that the couple is applied. **[2]**
- **3** The region bounded by the *y*-axis and the curves $y = \sin 2x$ and $y = \sqrt{2} \cos x$ for $0 \le x \le \frac{1}{4}\pi$ is occupied by a uniform lamina. Find the exact value of the *x*-coordinate of the centre of mass of the lamina. **[8]**
- **4** A uniform square lamina has mass *m* and sides of length 2*a*.
	- **(i)** Calculate the moment of inertia of the lamina about an axis through one of its corners perpendicular to its plane. **[3]**

The uniform square lamina has centre *C* and is free to rotate in a vertical plane about a fixed horizontal axis passing through one of its corners *A*. The lamina is initially held such that *AC* is vertical with *C* above *A*. The lamina is slightly disturbed from rest from this initial position. When AC makes an angle θ with the upward vertical, the force exerted by the axis on the lamina has components *X* parallel to *AC* and *Y* perpendicular to *AC* (see diagram).

- (ii) Show that the angular speed, ω , of the lamina satisfies $a\omega^2 = \frac{3}{4}g\sqrt{2}(1-\cos\theta)$. [4]
	- *(iii)* Find *X* and *Y* in terms of *m*, *g* and θ . **[6]**

Question 5 begins on page 4.

A pendulum consists of a uniform rod *AB* of length 4*a* and mass 4*m* and a spherical shell of radius *a*, mass *m* and centre *C*. The end *B* of the rod is rigidly attached to a point on the surface of the shell in such a way that *ABC* is a straight line. The pendulum is initially at rest with *B* vertically below *A* and it is free to rotate in a vertical plane about a smooth fixed horizontal axis passing through *A* (see diagram).

(i) Show that the moment of inertia of the pendulum about the axis of rotation is $47ma^2$. **[4]**

A particle of mass *m* is moving horizontally in the plane in which the pendulum is free to rotate. The particle has speed \sqrt{kga} , where k is a positive constant, and strikes the rod at a distance 3*a* from *A*. In the subsequent motion the particle adheres to the rod and the combined rigid body *P* starts to rotate.

(ii) Show that the initial angular speed of *P* is
$$
\frac{3}{56}\sqrt{\frac{kg}{a}}
$$
. [4]

(iii) For the case $k = 4$, find the angle that *P* has turned through when *P* first comes to instantaneous rest. **[4]**

(iv) Find the least value of *k* such that the rod reaches the horizontal. **[2]**

A uniform rod *AB* has mass *m* and length 2*a*. The rod can rotate in a vertical plane about a smooth fixed horizontal axis passing through *A*. One end of a light elastic string of natural length *a* and modulus of elasticity $\sqrt{3}mg$ is attached to *A*. The string passes over a small smooth fixed pulley *C*, where *AC* is horizontal and $AC = a$. The other end of the string is attached to the rod at its mid-point *D*. The rod makes an angle θ below the horizontal (see diagram).

(i) Taking *A* as the reference level for gravitational potential energy, show that the total potential energy V of the system is given by

$$
V = mga(\sqrt{3} - \sin\theta - \sqrt{3}\cos\theta). \tag{4}
$$

(ii) Show that $\theta = \frac{1}{6}\pi$ is a position of stable equilibrium for the system. **[5]**

The system is making small oscillations about the equilibrium position.

(iii) By differentiating the energy equation with respect to time, show that

$$
\frac{4}{3}a\ddot{\theta} = g(\cos\theta - \sqrt{3}\sin\theta). \tag{4}
$$

(iv) Using the substitution $\theta = \phi + \frac{1}{6}\pi$, show that the motion is approximately simple harmonic, and find the approximate period of the oscillations. **[6]**

END OF QUESTION PAPER

4731 Mark Scheme June 2014

